Posting this cause of the "16 year old girl doesn't age" thread or whatever it is called.
This was a recent study published by Harvard the other day. They may have found a way to reverse the aging process or at least slow it down. Pretty interesting, will be cool to see where it goes!
"Harvard scientists at Dana-Farber Cancer Institute say they have for the first time partially reversed age-related degeneration in mice, resulting in new growth of the brain and testes, improved fertility, and the return of a lost cognitive function.
In a report posted online by the journal Nature in advance of print publication, researchers led by Ronald A. DePinho, a Harvard Medical School (HMS) professor of genetics, said they achieved the milestone in aging science by engineering mice with a controllable telomerase gene. The telomerase enzyme maintains the protective caps called telomeres that shield the ends of chromosomes.
As humans age, low levels of telomerase are associated with progressive erosion of telomeres, which may then contribute to tissue degeneration and functional decline in the elderly. By creating mice with a telomerase switch, the researchers were able to generate prematurely aged mice. The switch allowed the scientists to find out whether reactivating telomerase in the animals would restore telomeres and mitigate the signs and symptoms of aging. The work showed a dramatic reversal of many aspects of aging, including reversal of brain disease and infertility.
Importantly, the animals showed no signs of developing cancer. This remains a concern because cancer cells turn on telomerase to make themselves virtually immortal. DePinho said the risk can be minimized by switching on telomerase only for a matter of days or weeks — which may be brief enough to avoid fueling hidden cancers or cause new ones to develop. Still, he observed, it is an important issue for further study.
In addition, DePinho said these results may provide new avenues for regenerative medicine, because they suggest that quiescent adult stem cells in severely aged tissues remain viable and can be reactivated to repair tissue damage.
Loss of telomeres sends a cascade of signals that cause cells to stop dividing or self-destruct, stem cells to go into retirement, organs to atrophy, and brain cells to die. Generally, the shortening of telomeres in normal tissues shows a steady decline, except in the case of cancer, where they are maintained.
The experiments used mice that had been engineered to develop severe DNA and tissue damage as a result of abnormal, premature aging. These animals had short, dysfunctional telomeres and suffered a variety of age-related afflictions that progressed in successive generations of mice. Among the conditions were testes reduced in size and depleted of sperm, atrophied spleens, damage to the intestines, and shrinkage of the brain along with an inability to grow new brain cells.
“We wanted to know: If you could flip the telomerase switch on and restore telomeres in animals with entrenched age-related disease, what would happen?” explained DePinho. “Would it slow down aging, stabilize it, or even reverse it?”
After four weeks, the scientists observed remarkable signs of rejuvenation in the treated mice. Overall, the mice exhibited increased levels of telomerase and lengthened telomeres, biological changes indicative of cells returning to a growth state with reversal of tissue degeneration, and increase in size of the spleen, testes, and brain. “It was akin to a Ponce de León effect,” noted DePinho, referring to the Spanish explorer who sought the mythical Fountain of Youth.
“When we flipped the telomerase switch on and looked a month later, the brains had largely returned to normal,” said DePinho. More newborn nerve cells were observed, and the fatty myelin sheaths around nerve cells — which had become thinned in the aged animals — increased in diameter. In addition, the increase in telomerase revitalized slumbering brain stem cells so they could produce new neurons.
To show that all this new activity actually caused functional improvements, the scientists tested the mice’s ability to avoid a certain area where they detected unpleasant odors that they associated with danger, such as scents of predators or rotten food. They had lost that survival skill as their olfactory nerve cells atrophied, but after the telomerase boost, those nerves regenerated and the mice regained their crucial sense of smell.
The telomerase boost also lengthened the rodents’ life spans compared to their untreated counterparts — but they did not live longer than normal mice, said the researchers.”
Sorry for the wall of text, if you want to read more:
http://news.harvard.edu/gazette/story/2010/11/partial-reversal-of-aging-achieved-in-mice/